量子计算的 ChatGPT 时刻即将来临?
2023-07-10 18:10:43来源:ZAKER科技
2023 年 6 月,IBM 量子部与加州大学伯克利分校、日本理研、劳伦斯伯克利国家实验室等合作单位在 Nature 发表一篇封面论文。他们通过 " 错误缓解 " 方法,在 127 量子比特的处理器上准确获得复杂量子线路运行结果,在强纠缠区间,这一线路已经无法用经典计算机进行蛮力模拟。不少人认为,这是量子计算(机)领域内的又一里程碑进展。那么,什么是错误缓解?IBM 做到了什么,还没做到什么?本文将试图给出解读。
2022 年底,我受《物理》期刊之邀,译过一篇 IBM 量子部门副总裁 Jay M. Gambetta 的专访,英文标题为 "Turning a Quantum Advantage"。如何信雅达地翻译这个标题,着实让我费了些脑筋,最后我和编辑杨老师一致选择了《点亮量子优势》(参见《点亮量子优势丨专访 IBM 量子部量子部副总裁》)。俗话说得好,自古评论区出才子,读者们如果有更好的译法,欢迎打到评论区。
(资料图片仅供参考)
翻译的时侯,我就为 Gambetta 的一些言论感到凛然。一方面是他提到的一些数字,包括退相干时间,他说已经达到了 100 毫秒且即将达到 300 毫秒,我一度认为是记者搞错了;以及两比特门保真度,已经达到 99.9%,并将在 23 年底达到 99.99%。我是做量子硬件的,这两个数字就足以震撼我了,而后面的内容则更令人惊叹。
首先,他说道," 采用更聪明的方法来做事,将比堆指标更重要 "。换句话说,未来能否实现量子计算优势,光靠不断提升技术指标——比如比特数、退相干时间、门保真度等——是不够的,我们需要从架构层面去思考如何扩展、如何工程化,引入新的方法来应对量子计算机所不可避免的错误,等等。
其次,提到量子纠错的时候,他说他们正在进行错误缓解方面的方法研究,针对有代表性的错误模型构建大量的线路实例,再对这些线路演化结果进行采样,通过统计学方法对整个量子系统的错误行为进行学习,以此来给出一个量子线路的无错估计。假如这个无错估计的准确率不断趋近于 1,那我们不就相当于实现了量子纠错?在这样的思路下,量子纠错将不再是一个跨越式的艰巨挑战(参见《量子计算的下一个超级大挑战》),而变成了一个渐进式进程,如同徒步登山,一步虽小,然夕阳过处,回望或已是山巅。
时隔半年,IBM 在 Nature 上发表了题为 " 前容错量子计算的效用证据(Evidence for the utility of quantum computing before fault tolerance)" 的论文,在学界和工业界瞬间引起很大反响。100+ 量子比特、无需量子纠错、超越经典计算、新里程碑,这些词汇无不牢牢抓住读者的眼球,或许这真是自 Google 的 " 量子霸权 " 以来量子计算发展的又一高光时刻了吧。仔细读了一遍论文,脑中回想起 Gambetta 专访中的一些观点,我有些凝神:Gambetta 已经将论文中的思想清晰表达过了,且半年前我就译成中文介绍给国内读者。此时论文一出震惊全场,所有人方惊坐而起,原来量子计算还可以这样玩 ……
IBM 成果登上 Nature 6 月 15 日刊封面(图片来源:Nature)无论如何,我还是希望尽可能以自己的专业知识,以尽量冷静的态度来解读一下这项工作。这次,IBM 的研究者和合作者们在 127 位的量子处理器上演示了一个二维横场伊辛(Ising)模型(与量子芯片具有相同的拓扑连接)的 Trotter 展开时间演化 [ 注 1 ] ,通过零噪声外推(ZNE)错误缓解方法,对演化结果作出了 " 准确 " [ 注 2 ] 的零噪声外推估计。整个线路涉及到 127 个量子比特,最多 60 层两比特门,共 2880 个 CNOT 门。在强纠缠情况下,经典的张量网络近似方法已经无法给出正确的结果,换句话说,已经超出了经典蛮力模拟的能力。
在 127 比特量子处理器上实现二维横场 Ising 模型的 Trotter 时间演化(a, b),以及如何标定整个系统中的错误(c, d)(图片来源:参考资料 [ 1 ] )文中对量子优势做了一番解释:量子优势可分两步来实现。首先在现有的量子硬件设施上实现超越经典蛮力模拟能力的准确计算,然后在此基础上找(有价值的)问题,实现问题相关量子线路的准确估计(这里我用 " 估计 " 而不是计算,因为在含噪声量子线路上,所能给出的永远是统计性结果)。论文涉及的工作算是完成了第一步,因此严格来说并没有实现量子优势。
不过,这一工作相对于 Google 的 " 量子霸权 " 仍前进了一步。倒不是因为比特数更多、线路深度更大、两比特门更多,而是当年 Google 所执行的随机线路采样给出的保真度极低,而本次 IBM 的工作,通过错误缓解方法,能够准确地给出一个复杂量子线路的有偏估计 [ 注 3 ] 。这就为含噪声量子计算机的效能给出了很强的预期,只要再往前一步,将这次所用到的二维横场伊辛模型演化线路换成一个有价值问题相关的量子线路,尽管这一步依旧很难,量子优势就真的确立了。
那这个错误缓解方法是何方神技,能化腐朽为神奇呢?要知道 100+ 比特规模,60 层线路,即便操控和读取的平均保真度都达到了 99% 以上,得到正确结果的概率也几乎为零。IBM 用到了一种叫 " 零噪声外推 " 的方法。具体来说,研究人员采用了所谓稀疏 Pauli-Lindblad 模型,对系统错误进行学习;通过调节其中的参数,可以实现不同的噪声增益 G,对大量不同增益下的噪声线路实例进行采样并计算其期望值,进一步,再通过不同噪声增益下的期望值去外推 G=0(也就是无噪声的情况)时的期望。这样一来,就相当于推出无错情况下的结果了。学过数值计算的读者大概会知道,相比内插,外推很多时候是不靠谱的,特别在距离真值点较远时。为此,IBM 测试了指数外推和线性外推两种方法,并与可经典模拟的特定情况(当线路中所有的门都变成 Clifford 门时)做了量子 - 经典对比验证,结果是高度一致的,这也是 IBM 声称这一方法能给出准确计算结果的底气所在。
蓝色点为错误缓解后的数据点,绿色为没有做错误缓解的数据点。粉色、橘色线则分别是采用 MPS、isoTNS 两种张量网络近似方法的计算结果。(图片来源:参考资料 [ 1 ] )此外,研究人员同时将量子计算机的运行时效与张量网络方法进行了对比。实际上,张量网络在应对深层线路时已无法给出准确的期望值。另一方面,执行同一个线路,张量网络方法获得一个数据点的运行时间分别是 8 小时和 30 小时(对应两种演化模型),量子的运行时间则分别是 4 小时和 9.5 小时。而这些时间中,真正的量子处理器运行时间只有 5 分零 7 秒,且可以通过降低量子比特重置时间来进一步降低运行时间。换言之,量子计算机的运行时效仍有巨大的提升空间。
当然,错误缓解方法是有代价的。零噪声外推相比之前提出的概率性错误消除,在采样开销上已经大幅降低,能够应对 100+ 量子比特规模的复杂量子线路。但以目前透露的消息来看,这种开销随着量子系统规模的增大,仍是指数级增长的,未来更大规模的量子处理器如何高效地进行错误缓解,仍存在挑战。
这一方法的成功验证,就像是照进含噪声量子计算时代的一束光,要让量子计算形成生产力,还有大量的工作要做。一方面我们需要进一步提升量子硬件的性能,文中提到两比特门保真度需要有 " 数量级 " 提升,而运行速度也要求大幅提升;另一方面,如何针对比如现在关注度较高的启发式量子算法,包括量子化学计算、近似优化等,进一步验证噪声缓解 / 消除算法的有效性,也是亟待研究的。
回来再说一下 Gambetta 的专访,在问到量子计算何时能打败经典计算时,他说了一段令我敬佩的话。他说,与其区分经典和量子,并将二者对立,期待一个量子打败经典的时刻,不如站在一个更一般的角度,将二者统一。计算就是计算。实际的情况是,量子计算需要大量的经典计算辅助,上面提到的错误缓解方法,就是一个典型的例子。我们真正追求的,是解决复杂问题的运行时效,经典辅助量子,量子反过来帮助经典,二者本就是难以区分的统一体。我们需要站在更高的视角去看待量子计算。
最后值得一提的是,优质的量子资源是极其宝贵的。IBM 的工作是在一个代号为 "ibm_kyiv" 的量子云平台上完成的,所用的芯片为 "Eagle_r3" 127 量子比特处理器。这个处理器的退相干时间 T1 和 T2 的中位数分别为 288 微秒和 127 微秒,达到了前所未有的水平。临近比特之间的 CNOT 门通过交叉共振相互作用(Cross-Resonance,简称 CR)校准实现。得益于高的退相干时间和其他性能,两比特门操控保真度的中位数超过了 99%,读取保真度中位数也超过了 99%。这是错误缓解方法得以收敛的重要硬件条件。量子硬件的进一步发展固然要依靠核心的硬件团队来推进,但如何发挥这些有噪声的量子硬件效能,则需要广泛的智力参与,需要来自数学、统计、计算、信息学、软件等多学科的人才共同参与。而鼓励这种广泛的高智力协同创新的最好方式,就是将最好的量子资源共享出去——通过量子云计算平台,IBM 一直就是这么做的。
遗憾的是,这些顶尖的量子计算资源对中国已经不开放了,而好消息则是我们自己的 100+ 规模量子计算云平台已经推出,并且对全球开放!随着国内越来越多的人参与其中,随着量子应用需求的预期不断增强,相信属于中国的量子优势 " 临界时刻 " 定会加速到来。
责任编辑:hnmd003
相关阅读
相关阅读
-
量子计算的 ChatGPT 时刻即将来临?
2023年6月,IBM量子部与加州大学伯克利分校、日本理研、劳伦斯伯克利国
-
骁龙 7 Gen 3 又要挤牙膏?但有骁龙 8 Gen 2 下放中高端新机
高通在推出了骁龙8Gen2以及骁龙7+Gen2(代号SM7475)移动处理器后,终
-
网上流出假冒三星“ 980 EVO ” SSD:性能比 U 盘还要差
一直以来,PC硬件市场都存在一些假冒产品。比如今年初,就有玩家购买到
-
Threads 四天破亿,扎克伯格暴击马斯克
我抄袭?我模仿?可我破亿了啊撰文|毕安娣编辑|王靖来源|盒饭财经(ID
-
利用董宇辉蹭流量?俞敏洪:我和他不是上下级,想离开我支持!董宇辉曾称一年或已拒绝超 1 个亿……
近日,新东方创始人俞敏洪在东方甄选直播中表示,现在有一些言论说自己
-
美团补贴 10 亿搅局香港外卖市场,是起点还是终点?
2023年5月22日早上8时,美团旗下外卖平台KeeTa在旺角地区开始营业,并
-
波音宣布人事重大调整!效力30余年的谢利嘉退休、柳青代理波音中国总裁
快科技7月10日消息,波音今日宣布了一项人事重大调整,已经效力波音公
-
十倍潜力股?鸿博股份背后的谋局者
由于今年整体经济环境复杂,叠加各种外部因素扰动,整体交易处于缩量,
-
天津学生保险多少钱?保障内容有哪些?
天津的学生保险费用根据不同的保险公司和保险方案而有所不同。一般来说
-
学生保险有什么用?怎么查询?
学生保险可以保障学生的身体健康。学生在校期间,由于学习、生活等各种
-
学生保险学生死了能赔多少?是怎么理赔的?
学生保险中,学生死了能赔的金额是由基本保险金额和附加保险金额共同确
-
意外险和工伤险有什么区别?有必要买吗?
意外险和工伤险在保险范围和赔偿方式上有所不同。意外险通常覆盖因意外
-
中国人寿和人保寿险是什么关系?哪个好?
中国人寿和人保寿险是两家在中国寿险市场上具有重要地位的保险公司。中
-
房企迎来再洗牌:地产前五强央企占四席,千亿巨头罕见向中介渠道低头
刚刚过去的周末(7月8日-9日),很多深圳中介收到一则消息——华润置地
-
上线两天即发售罄预警,古茗新品“云雾栀子青”轻乳茶卖爆了
炎炎夏日,谁不想来一杯清新爽口的饮品呢?今年夏天,轻乳茶这个细分品
-
杨光出任财信人寿“一把手”,芒果传媒跨界入局期待产业协同
文|记者何秀兰财信人寿迎来公司主要负责人调整。据财信金控微信公众号
-
网易瑶台携「支付宝会员生日会」项目亮相2023世界人工智能大会
7月6日-8日,2023世界人工智能大会(WAIC)在上海举办,大会以“智
-
B站“横竖”都要
B站即将迎来一次重要调整。6月26日的哔哩哔哩14周年庆上,CEO陈睿宣
-
Threads四天破亿,扎克伯格暴击马斯克
4天,Threads注册用户破亿。这个速度超过了ChatGPT,后者用了2个月
-
泡泡玛特回应被强执1710万元:正常商业纠纷,已支付全部款项
7月10日下午消息,针对“被强制执行1710万元”一事,泡泡玛特相关负
-
王宁4年亏16亿,投资人苦等Keep上市套现?
2022年4月,台湾艺人刘畊宏凭《本草纲目》毽子操红遍大江南北,掀起
-
中国汽车论坛 | 高源:岚图汽车出海的思考与实践
中国汽车论坛|高源:岚图汽车出海的思考与实践2023年7月5日-7日,由中
-
中国汽车论坛 | 许文强:乘势而上,广汽能源出海展望
中国汽车论坛|许文强:乘势而上,广汽能源出海展望2023年7月5日-7日,
-
中国汽车论坛 | 周安健:满电出征,走向深蓝
中国汽车论坛|周安健:满电出征,走向深蓝2023年7月5日-7日,由中国汽
-
纷玩岛靠谱吗 缤纷岛票务可靠吗安全吗
靠谱的,可靠安全的。纷玩岛比大麦网提前2天,但是纷玩岛一笔订单只能
-
泓德基金:新能源、光伏反弹点评
7月10日新能源板块全线反弹,电源设备、锂电、光伏方向均大涨,对此,
-
中国人寿:上半年累计原保险保费收入约4702亿元 同比增6.9%
中国人寿(02628 HK)在港交所发布公告,2023年上半年累计原保险保费收入
-
6月中小企业发展指数发布 工业建筑业等多个指数升幅明显
6月,中国中小企业发展指数的8个分项指数6升2降,其中市场指数和投入指
-
北向资金全天净买入12.3亿元 终结连续4日净卖出态势
数据显示,北向资金早盘一度加仓超30亿,全天净买入12 3亿元,终结连续
-
全球5G专利排名:华为第一 小米进入前十
排名第四位至第十位的企业依次是中兴、LG、诺基亚、爱立信、大唐、OPPO
精彩推荐
阅读排行
精彩推送
- 谷歌发起首个机器遗忘挑战赛
- 索尼推出了 HT-AX7 扬声器,利...
- 日本警察将使用 AI 分析可疑人...
- 万达信息与华为云共同签署盘古大...
- iOS 版微信内测朗读功能,可选稍后听
- 乘联会:今年 1~6 月国内乘用...
- 瑞媒:沙特国家银行曾欲出手救瑞...
- 光伏龙头大涨 8%,中国中免一度...
- 全球连线|收集海外珍稀汉籍 探...
- 日本女足世界杯球衣号:熊谷纱希...
- 学生意外险包括牙齿吗?怎么购买?
- 厂里的意外险包括哪些范围?赔付...
- 学生意外保险包括疾病吗?怎么买?
- 幼儿园学校买的保险包含哪些?有...
- 孩子在学校交的意外险都包括哪些...
- 最低费率为0!理财产品费率纷纷...
- 2023第十一届TopDigital创新营销...
- 臻至所见·健康所愿 “臻医健...
- 网信中国:关于加强“自媒体”管...
- 京东健康发起抑郁症科普直播,北...
- Fisker第二季度产量低于目标
- Model 2要来了?传特斯拉已完成...
- 凯迪拉克锐歌宣布官降,综合优惠...
- 茶淀街道宜春里社区“津彩假日”...
- 伊利集团拟发行不超50亿元超短融
- 全球连线|收集海外珍稀汉籍 探...
- 微视频:盛世中华 何以中国
- 协同布局算力一张网
- Evernote 印象笔记宣布裁员,开...
- 美国放羊,中国养鱼,「光伏 +...